Struct nalgebra::Mat5 [] [src]

pub struct Mat5<N> {
    pub m11: N,
    pub m21: N,
    pub m31: N,
    pub m41: N,
    pub m51: N,
    pub m12: N,
    pub m22: N,
    pub m32: N,
    pub m42: N,
    pub m52: N,
    pub m13: N,
    pub m23: N,
    pub m33: N,
    pub m43: N,
    pub m53: N,
    pub m14: N,
    pub m24: N,
    pub m34: N,
    pub m44: N,
    pub m54: N,
    pub m15: N,
    pub m25: N,
    pub m35: N,
    pub m45: N,
    pub m55: N,
}

Square matrix of dimension 5.

Fields

m11
m21
m31
m41
m51
m12
m22
m32
m42
m52
m13
m23
m33
m43
m53
m14
m24
m34
m44
m54
m15
m25
m35
m45
m55

Methods

impl<N> Mat5<N>

fn new(m11: N, m12: N, m13: N, m14: N, m15: N, m21: N, m22: N, m23: N, m24: N, m25: N, m31: N, m32: N, m33: N, m34: N, m35: N, m41: N, m42: N, m43: N, m44: N, m45: N, m51: N, m52: N, m53: N, m54: N, m55: N) -> Mat5<N>

impl<N> Mat5<N>

fn as_array(&self) -> &[[N; 5]; 5]

View this matrix as a column-major array of arrays.

fn as_array_mut<'a>(&'a mut self) -> &'a mut [[N; 5]; 5]

View this matrix as a column-major mutable array of arrays.

fn from_array_ref(array: &[[N; 5]; 5]) -> &Mat5<N>

View a column-major array of array as a vector.

fn from_array_mut(array: &mut [[N; 5]; 5]) -> &mut Mat5<N>

View a column-major array of array as a mutable vector.

impl<N: Copy> Mat5<N>

unsafe fn at_fast(&self, (i, j): (usize, usize)) -> N

unsafe fn set_fast(&mut self, (i, j): (usize, usize), val: N)

Trait Implementations

impl<N: Zero + One> Eye for Mat5<N>

fn new_identity(dim: usize) -> Mat5<N>

impl<N: Copy> Repeat<N> for Mat5<N>

fn repeat(val: N) -> Mat5<N>

impl<Nin: Copy, Nout: Copy + Cast<Nin>> Cast<Mat5<Nin>> for Mat5<Nout>

fn from(v: Mat5<Nin>) -> Mat5<Nout>

impl<N: Absolute<N>> Absolute<Mat5<N>> for Mat5<N>

fn abs(m: &Mat5<N>) -> Mat5<N>

impl<N: Zero> Zero for Mat5<N>

fn zero() -> Mat5<N>

fn is_zero(&self) -> bool

impl<N: Copy + BaseNum> One for Mat5<N>

fn one() -> Mat5<N>

impl<N: Add<N, Output=N>> Add<Mat5<N>> for Mat5<N>

type Output = Mat5<N>

fn add(self, right: Mat5<N>) -> Mat5<N>

impl<N: Sub<N, Output=N>> Sub<Mat5<N>> for Mat5<N>

type Output = Mat5<N>

fn sub(self, right: Mat5<N>) -> Mat5<N>

impl<N: Copy + Add<N, Output=N>> Add<N> for Mat5<N>

type Output = Mat5<N>

fn add(self, right: N) -> Mat5<N>

impl<N: Copy + Sub<N, Output=N>> Sub<N> for Mat5<N>

type Output = Mat5<N>

fn sub(self, right: N) -> Mat5<N>

impl<N: Copy + Mul<N, Output=N>> Mul<N> for Mat5<N>

type Output = Mat5<N>

fn mul(self, right: N) -> Mat5<N>

impl<N: Copy + Div<N, Output=N>> Div<N> for Mat5<N>

type Output = Mat5<N>

fn div(self, right: N) -> Mat5<N>

impl<N> Iterable<N> for Mat5<N>

fn iter<'l>(&'l self) -> Iter<'l, N>

impl<N> IterableMut<N> for Mat5<N>

fn iter_mut<'l>(&'l mut self) -> IterMut<'l, N>

impl<N> Dim for Mat5<N>

fn dim(_: Option<Mat5<N>>) -> usize

impl<N> Shape<(usize, usize)> for Mat5<N>

fn shape(&self) -> (usize, usize)

impl<N: Copy> Indexable<(usize, usize), N> for Mat5<N>

fn swap(&mut self, (i1, j1): (usize, usize), (i2, j2): (usize, usize))

unsafe fn unsafe_at(&self, (i, j): (usize, usize)) -> N

unsafe fn unsafe_set(&mut self, (i, j): (usize, usize), val: N)

impl<N> Index<(usize, usize)> for Mat5<N>

type Output = N

fn index(&self, (i, j): (usize, usize)) -> &N

impl<N> IndexMut<(usize, usize)> for Mat5<N>

fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N

impl<N: Copy + BaseNum> Mul<Mat5<N>> for Mat5<N>

type Output = Mat5<N>

fn mul(self, right: Mat5<N>) -> Mat5<N>

impl<N: Copy + BaseNum> Mul<Vec5<N>> for Mat5<N>

type Output = Vec5<N>

fn mul(self, right: Vec5<N>) -> Vec5<N>

impl<N: Copy + BaseNum> Mul<Pnt5<N>> for Mat5<N>

type Output = Pnt5<N>

fn mul(self, right: Pnt5<N>) -> Pnt5<N>

impl<N: Copy + BaseNum> Inv for Mat5<N>

fn inv(&self) -> Option<Mat5<N>>

fn inv_mut(&mut self) -> bool

impl<N: Copy> Transpose for Mat5<N>

fn transpose(&self) -> Mat5<N>

fn transpose_mut(&mut self)

impl<N: ApproxEq<N>> ApproxEq<N> for Mat5<N>

fn approx_epsilon(_: Option<Mat5<N>>) -> N

fn approx_ulps(_: Option<Mat5<N>>) -> u32

fn approx_eq_eps(&self, other: &Mat5<N>, epsilon: &N) -> bool

fn approx_eq_ulps(&self, other: &Mat5<N>, ulps: u32) -> bool

fn approx_eq(&self, other: &Self) -> bool

impl<N: Copy + Zero> Row<Vec5<N>> for Mat5<N>

fn nrows(&self) -> usize

fn set_row(&mut self, row: usize, v: Vec5<N>)

fn row(&self, row: usize) -> Vec5<N>

impl<N: Copy + Zero> Col<Vec5<N>> for Mat5<N>

fn ncols(&self) -> usize

fn set_col(&mut self, col: usize, v: Vec5<N>)

fn col(&self, col: usize) -> Vec5<N>

impl<N: Clone + Copy + Zero> ColSlice<DVec5<N>> for Mat5<N>

fn col_slice(&self, cid: usize, rstart: usize, rend: usize) -> DVec5<N>

impl<N: Clone + Copy + Zero> RowSlice<DVec5<N>> for Mat5<N>

fn row_slice(&self, rid: usize, cstart: usize, cend: usize) -> DVec5<N>

impl<N: Copy + Zero> Diag<Vec5<N>> for Mat5<N>

fn from_diag(diag: &Vec5<N>) -> Mat5<N>

fn diag(&self) -> Vec5<N>

impl<N: Copy + Zero> DiagMut<Vec5<N>> for Mat5<N>

fn set_diag(&mut self, diag: &Vec5<N>)

impl<N: BaseNum + Copy> ToHomogeneous<Mat6<N>> for Mat5<N>

fn to_homogeneous(&self) -> Mat6<N>

impl<N: BaseNum + Copy> FromHomogeneous<Mat6<N>> for Mat5<N>

fn from(m: &Mat6<N>) -> Mat5<N>

impl<N> EigenQR<N, Vec5<N>> for Mat5<N> where N: BaseFloat + ApproxEq<N> + Clone

fn eigen_qr(&self, eps: &N, niter: usize) -> (Mat5<N>, Vec5<N>)

impl<N: Rand> Rand for Mat5<N>

fn rand<R: Rng>(rng: &mut R) -> Mat5<N>

Derived Implementations

impl<N: Copy> Copy for Mat5<N>

impl<N: Debug> Debug for Mat5<N>

fn fmt(&self, __arg_0: &mut Formatter) -> Result

impl<N: Hash> Hash for Mat5<N>

fn hash<__H: Hasher>(&self, __arg_0: &mut __H)

fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher

impl<N: Clone> Clone for Mat5<N>

fn clone(&self) -> Mat5<N>

fn clone_from(&mut self, source: &Self)

impl<N: Decodable> Decodable for Mat5<N>

fn decode<__D: Decoder>(__arg_0: &mut __D) -> Result<Mat5<N>, __D::Error>

impl<N: Encodable> Encodable for Mat5<N>

fn encode<__S: Encoder>(&self, __arg_0: &mut __S) -> Result<(), __S::Error>

impl<N: PartialEq> PartialEq for Mat5<N>

fn eq(&self, __arg_0: &Mat5<N>) -> bool

fn ne(&self, __arg_0: &Mat5<N>) -> bool

impl<N: Eq> Eq for Mat5<N>