Struct nalgebra::Rot2
[−]
[src]
pub struct Rot2<N> {
// some fields omitted
}Two dimensional rotation matrix.
pub struct Rot2<N> {
// some fields omitted
}Two dimensional rotation matrix.
impl<N: Clone + BaseFloat + Neg<Output=N>> Rot2<N>impl<N> Rot2<N>impl<N: BaseFloat + Clone> Rotation<Vec1<N>> for Rot2<N>fn rotation(&self) -> Vec1<N>fn inv_rotation(&self) -> Vec1<N>fn append_rotation_mut(&mut self, rot: &Vec1<N>)fn append_rotation(&self, rot: &Vec1<N>) -> Rot2<N>fn prepend_rotation_mut(&mut self, rot: &Vec1<N>)fn prepend_rotation(&self, rot: &Vec1<N>) -> Rot2<N>fn set_rotation(&mut self, rot: Vec1<N>)impl<N: BaseFloat> RotationTo for Rot2<N>type AngleType = Ntype DeltaRotationType = Rot2<N>fn angle_to(&self, other: &Self) -> Nfn rotation_to(&self, other: &Self) -> Rot2<N>impl<N: Rand + BaseFloat> Rand for Rot2<N>impl<N: BaseFloat> AbsoluteRotate<Vec2<N>> for Rot2<N>fn absolute_rotate(&self, v: &Vec2<N>) -> Vec2<N>impl<N: BaseNum> Rotate<Vec2<N>> for Rot2<N>impl<N: BaseNum> Rotate<Pnt2<N>> for Rot2<N>impl<N: BaseNum> Transform<Vec2<N>> for Rot2<N>impl<N: BaseNum> Transform<Pnt2<N>> for Rot2<N>impl<N> Dim for Rot2<N>impl<N: BaseNum> Mul<Rot2<N>> for Rot2<N>impl<N: BaseNum> Mul<Vec2<N>> for Rot2<N>impl<N: BaseNum> Mul<Pnt2<N>> for Rot2<N>impl<N: BaseNum> One for Rot2<N>impl<N: BaseNum> Eye for Rot2<N>fn new_identity(dim: usize) -> Rot2<N>impl<N: Zero + BaseNum + Cast<f64> + BaseFloat> RotationMatrix<N, Vec2<N>, Vec1<N>> for Rot2<N>type Output = Rot2<N>fn to_rot_mat(&self) -> Rot2<N>impl<N: Copy + Zero> Col<Vec2<N>> for Rot2<N>fn ncols(&self) -> usizefn col(&self, i: usize) -> Vec2<N>fn set_col(&mut self, i: usize, col: Vec2<N>)impl<N: Copy + Zero> Row<Vec2<N>> for Rot2<N>fn nrows(&self) -> usizefn row(&self, i: usize) -> Vec2<N>fn set_row(&mut self, i: usize, row: Vec2<N>)impl<N> Index<(usize, usize)> for Rot2<N>impl<N: Absolute<N>> Absolute<Mat2<N>> for Rot2<N>impl<N: BaseNum> ToHomogeneous<Mat3<N>> for Rot2<N>fn to_homogeneous(&self) -> Mat3<N>impl<N: Copy> Inv for Rot2<N>impl<N: Copy> Transpose for Rot2<N>fn transpose(&self) -> Rot2<N>fn transpose_mut(&mut self)impl<N: ApproxEq<N>> ApproxEq<N> for Rot2<N>fn approx_epsilon(_: Option<Rot2<N>>) -> Nfn approx_ulps(_: Option<Rot2<N>>) -> u32fn approx_eq(&self, other: &Rot2<N>) -> boolfn approx_eq_eps(&self, other: &Rot2<N>, epsilon: &N) -> boolfn approx_eq_ulps(&self, other: &Rot2<N>, ulps: u32) -> boolimpl<N: Copy + Zero> Diag<Vec2<N>> for Rot2<N>impl<N: Copy> Copy for Rot2<N>impl<N: Hash> Hash for Rot2<N>fn hash<__H: Hasher>(&self, __arg_0: &mut __H)fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasherimpl<N: Debug> Debug for Rot2<N>impl<N: Clone> Clone for Rot2<N>fn clone(&self) -> Rot2<N>fn clone_from(&mut self, source: &Self)impl<N: Decodable> Decodable for Rot2<N>impl<N: Encodable> Encodable for Rot2<N>impl<N: PartialEq> PartialEq for Rot2<N>impl<N: Eq> Eq for Rot2<N>