Struct glium::Program [] [src]

pub struct Program {
    // some fields omitted
}

A combination of shaders linked together.

Methods

impl Program

fn new<'a, F, I>(facade: &F, input: I) -> Result<Program, ProgramCreationError> where I: Into<ProgramCreationInput<'a>>, F: Facade

Builds a new program.

fn from_source<'a, F>(facade: &F, vertex_shader: &'a str, fragment_shader: &'a str, geometry_shader: Option<&'a str>) -> Result<Program, ProgramCreationError> where F: Facade

Builds a new program from GLSL source code.

A program is a group of shaders linked together.

Parameters

  • vertex_shader: Source code of the vertex shader.
  • fragment_shader: Source code of the fragment shader.
  • geometry_shader: Source code of the geometry shader.

Example

let program = glium::Program::from_source(&display, vertex_source, fragment_source,
    Some(geometry_source));

fn get_binary(&self) -> Result<Binary, GetBinaryError>

Returns the program's compiled binary.

You can store the result in a file, then reload it later. This avoids having to compile the source code every time.

fn get_frag_data_location(&self, name: &str) -> Option<u32>

Returns the location of an output fragment, if it exists.

The location is low-level information that is used internally by glium. You probably don't need to call this function.

You can declare output fragments in your shaders by writing:

out vec4 foo;

fn get_uniform(&self, name: &str) -> Option<&Uniform>

Returns informations about a uniform variable, if it exists.

fn uniforms(&self) -> Iter<String, Uniform>

Returns an iterator to the list of uniforms.

Example

for (name, uniform) in program.uniforms() {
    println!("Name: {} - Type: {:?}", name, uniform.ty);
}

fn get_uniform_blocks(&self) -> &HashMap<String, UniformBlock>

Returns a list of uniform blocks.

Example

for (name, uniform) in program.get_uniform_blocks() {
    println!("Name: {}", name);
}

fn get_transform_feedback_buffers(&self) -> &[TransformFeedbackBuffer]

Returns the list of transform feedback varyings.

fn transform_feedback_matches(&self, format: &VertexFormat, stride: usize) -> bool

True if the transform feedback output of this program matches the specified VertexFormat and stride.

The stride is the number of bytes between two vertices.

fn get_output_primitives(&self) -> Option<OutputPrimitives>

Returns the type of geometry that transform feedback would generate, or None if it depends on the vertex/index data passed when drawing.

This corresponds to GL_GEOMETRY_OUTPUT_TYPE or GL_TESS_GEN_MODE. If the program doesn't contain either a geometry shader or a tessellation evaluation shader, returns None.

fn has_tessellation_shaders(&self) -> bool

Returns true if the program contains a tessellation stage.

fn get_attribute(&self, name: &str) -> Option<&Attribute>

Returns informations about an attribute, if it exists.

fn attributes(&self) -> Iter<String, Attribute>

Returns an iterator to the list of attributes.

Example

for (name, attribute) in program.attributes() {
    println!("Name: {} - Type: {:?}", name, attribute.ty);
}

fn has_srgb_output(&self) -> bool

Returns true if the program has been configured to output sRGB instead of RGB.

fn get_shader_storage_blocks(&self) -> &HashMap<String, UniformBlock>

Returns the list of shader storage blocks.

Example

for (name, uniform) in program.get_shader_storage_blocks() {
    println!("Name: {}", name);
}

fn uses_point_size(&self) -> bool

Returns true if the program has been configured to use the gl_PointSize variable.

If the program uses gl_PointSize without having been configured appropriately, then setting the value of gl_PointSize will have no effect.

Trait Implementations

impl Debug for Program

fn fmt(&self, formatter: &mut Formatter) -> Result<(), Error>

impl GlObject for Program

type Id = Handle

fn get_id(&self) -> Handle