Struct cgmath::Basis2 [] [src]

pub struct Basis2<S> {
    // some fields omitted
}

A two-dimensional rotation matrix.

The matrix is guaranteed to be orthogonal, so some operations can be implemented more efficiently than the implementations for math::Matrix2. To enforce orthogonality at the type level the operations have been restricted to a subset of those implemented on Matrix2.

Example

Suppose we want to rotate a vector that lies in the x-y plane by some angle. We can accomplish this quite easily with a two-dimensional rotation matrix:

use cgmath::rad;
use cgmath::Vector2;
use cgmath::{Matrix, Matrix2};
use cgmath::{Rotation, Rotation2, Basis2};
use cgmath::ApproxEq;
use std::f64;

// For simplicity, we will rotate the unit x vector to the unit y vector --
// so the angle is 90 degrees, or π/2.
let unit_x: Vector2<f64> = Vector2::unit_x();
let rot: Basis2<f64> = Rotation2::from_angle(rad(0.5f64 * f64::consts::PI));

// Rotate the vector using the two-dimensional rotation matrix:
let unit_y = rot.rotate_vector(&unit_x);

// Since sin(π/2) may not be exactly zero due to rounding errors, we can
// use cgmath's approx_eq() feature to show that it is close enough.
assert!(unit_y.approx_eq(&Vector2::unit_y()));

// This is exactly equivalent to using the raw matrix itself:
let unit_y2: Matrix2<_> = rot.into();
let unit_y2 = unit_y2.mul_v(&unit_x);
assert_eq!(unit_y2, unit_y);

// Note that we can also concatenate rotations:
let rot_half: Basis2<f64> = Rotation2::from_angle(rad(0.25f64 * f64::consts::PI));
let unit_y3 = rot_half.concat(&rot_half).rotate_vector(&unit_x);
assert!(unit_y3.approx_eq(&unit_y2));

Trait Implementations

impl<S: BaseFloat> AsRef<Matrix2<S>> for Basis2<S>

fn as_ref(&self) -> &Matrix2<S>

impl<S: BaseFloat + 'static> Rotation<S, Vector2<S>, Point2<S>> for Basis2<S>

fn identity() -> Basis2<S>

fn look_at(dir: &Vector2<S>, up: &Vector2<S>) -> Basis2<S>

fn between_vectors(a: &Vector2<S>, b: &Vector2<S>) -> Basis2<S>

fn rotate_vector(&self, vec: &Vector2<S>) -> Vector2<S>

fn concat(&self, other: &Basis2<S>) -> Basis2<S>

fn concat_self(&mut self, other: &Basis2<S>)

fn invert(&self) -> Basis2<S>

fn invert_self(&mut self)

fn rotate_point(&self, point: &P) -> P

fn rotate_ray(&self, ray: &Ray<S, P, V>) -> Ray<S, P, V>

impl<S: BaseFloat> ApproxEq<S> for Basis2<S>

fn approx_eq_eps(&self, other: &Basis2<S>, epsilon: &S) -> bool

fn approx_epsilon(_hack: Option<Self>) -> T

fn approx_eq(&self, other: &Self) -> bool

impl<S: BaseFloat + 'static> Rotation2<S> for Basis2<S>

fn from_angle(theta: Rad<S>) -> Basis2<S>

Derived Implementations

impl<S: Decodable> Decodable for Basis2<S>

fn decode<__D: Decoder>(__arg_0: &mut __D) -> Result<Basis2<S>, __D::Error>

impl<S: Encodable> Encodable for Basis2<S>

fn encode<__S: Encoder>(&self, __arg_0: &mut __S) -> Result<(), __S::Error>

impl<S: Clone> Clone for Basis2<S>

fn clone(&self) -> Basis2<S>

fn clone_from(&mut self, source: &Self)

impl<S: Copy> Copy for Basis2<S>

impl<S: PartialEq> PartialEq for Basis2<S>

fn eq(&self, __arg_0: &Basis2<S>) -> bool

fn ne(&self, __arg_0: &Basis2<S>) -> bool